Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies
نویسندگان
چکیده
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the functional consequences of sequence variants in the PIGY gene. Two families with different phenotypes had homozygous recessive sequence variants in the GPI biosynthesis gene PIGY. Two sisters with c.137T>C (p.Leu46Pro) PIGY variants had multi-system disease including dysmorphism, seizures, severe developmental delay, cataracts and early death. There were significantly reduced levels of GPI-anchored proteins (CD55 and CD59) on the surface of patient-derived skin fibroblasts (∼20-50% compared with controls). In a second, consanguineous family, two siblings had moderate development delay and microcephaly. A homozygous PIGY promoter variant (c.-540G>A) was detected within a 7.7 Mb region of autozygosity. This variant was predicted to disrupt a SP1 consensus binding site and was shown to be associated with reduced gene expression. Mutations in PIGY can occur in coding and non-coding regions of the gene and cause variable phenotypes. This article contributes to understanding of the range of disease phenotypes and disease genes associated with deficiencies of the GPI-anchor biosynthesis pathway and also serves to highlight the potential importance of analysing variants detected in 5'-UTR regions despite their typically low coverage in exome data.
منابع مشابه
Spectrum of Phenylalanine Hydroxylase Gene Mutations in Hamadan and Lorestan Provinces of Iran and Their Associations with Variable Number of Tandem Repeat Alleles
Phenylketonuria (PKU) is one of the most common known inherited metabolic diseases. The present study aimed to investigate the status of molecular defects in phenylalanine hydroxylase (PAH) gene in western Iranian PKU patients (predominantly from Kermanshah, Hamadan, and Lorestan provinces) during 2014-2016. Additionally, the results were compared with similar studies in Iran. Nucleotide sequen...
متن کاملNonsense-mediated mRNA decay among coagulation factor genes
Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...
متن کاملFrameshift Mutations (Deletion at Codon 1309 and Codon 849) in the APC Gene in Iranian FAP Patients: a Case Series and Review Of The literature
Familial adenomatous polyposis (FAP) is responsible for <1% of colorectal cancer (CRC) cases and is inherited as an autosomal dominant trait. Patients generally present hundreds to thousands of adenomas and develop colorectal cancer by age 35- 40 if left untreated. Here we report four patients with germline frameshift mutation (small deletion) at exon 15 of adenomatous polyposis coli (APC) tumo...
متن کاملPIGO deficiency: palmoplantar keratoderma and novel mutations
BACKGROUND Several genetic defects have been identified in the glycosylphosphatidylinositol (GPI) anchor synthesis, including mutations in PIGO encoding phosphatidylinositol glycan anchor biosynthesis class O protein. These defects constitute a subgroup of the congenital disorders of glycosylation (CDG). Seven patients from five families have been reported carrying variants in PIGO that cause a...
متن کاملMolecular Diagnosis of Familial Hypercholesterolemia
Abstract Background and objectives: Familial hypercholesterolemia (FH) is an autosomal disorder characterized by increased levels of total cholesterol and low density lipoprotein cholesterol. The FH clinical phenotype has been associated with increased risk of coronary heart disease and premature death. The mutation in LDLR gene in most cases is responsible for FH phenotype. Furthermore, other ...
متن کامل